Gold Member Since 2017
Audited Supplier
Shandong Sinoltech International Co., Ltd.

Solar Thin Film Charger, Solar Battery, Thin Film Solar manufacturer / supplier in China, offering 120W Flexible PV Panels with Adhesive Back, 65W 12V Rolled up Flexible Solar Panel, 60 Watt All in One Solar Powered Street Lighting and so on.

(/ )

Supplier Homepage Product Flexible Solar Panel 120W Flexible PV Panels with Adhesive Back

120W Flexible PV Panels with Adhesive Back

FOB Price: US $180-216 / Piece
Min. Order: 1 Piece
Min. Order FOB Price
1 Piece US $180-216/ Piece
Get Latest Price
Port: Shanghai, China
Production Capacity: 10000PCS/Month
Payment Terms: T/T, Western Union

Request a custom order and have something just for you!

Send Customized Request
Basic Info
  • Model NO.: FLEX-02N
  • Number of Cells: 11
  • Condition: New
  • Material: Amorphous Silicon
  • Peak Power: 120W
  • Working Current: 3.86A
  • Isc: 4.34A
  • Width: 370mm
  • Junction Box Type: IP68
  • Transport Package: Strong Carton, Color Box
  • Origin: China
  • Warranty: 5 Years
  • Application: Industrial
  • Certification: CE
  • Product Name: 120W Flexible PV Panels with Adhesive Back
  • Working Voltage: 31.1V
  • Voc: 39.1V
  • Length: 2598mm
  • Thickness: 2.5mm
  • Trademark: SINOLTECH
  • Specification: CE
  • HS Code: 85414020
Product Description
120W flexible PV panels with adhesive back 

Specification Data for 120W, model number: FLEX-02N:

120W Flexible PV Panels with Adhesive Back

Why flexible solar?

Flexible lightweight solar cells and modules can go where rigid glass modules can't.
This makes it possible to add solar energy generation to low load capacity roofs, structures such as carports and storage facilities, curved surfaces, vehicles, floating reservoir covers, landfill membrane covers and many other applications.
Ideal Application:
-Roofs and other structures not built to support racks & panels, such as alreadyconstructed carports that can be retrofitted for solar
-Off-grid applications

CIGS(Copper Indium Gallium Diselenide) Technology
CIGS thin film provides unparalleled thin-film cell efficiency at 16-17% and rising. Weighing in at a mere 0.7 lb/sqft, comprised of the most advanced PV laminate materials available and with a 25-year power warranty.
Production begins with high-grade stainless steel foil and a physical vapor deposition processes to produce the most controlled, stable, and powerful flexible stainless steel CIGS cell in the world.  After the cell structure is deposited on the foil, special transparent conductive oxides are applied and then a very specialized plastic-cell interconnect mesh-wire system is laminated to the cell, which is in turn protected by special solar barrier plastics.  The transparent solar barrier is key to the longevity and high efficiency of the FLEX module series.  The special plastic backsheet has an internal aluminum film to prevent all water transmission or other contaminates from eroding the powerful stainless steel CIGS cells.
CIGS Thin-Film Efficiency: Then vs. Now
The limiting factors with flexible solar modules have traditionally been tied to cost and overall
In the past, thin-film modules were expensive and converted a fraction of the energy from the
sun into electricity, with efficiency rates between 8-10%. However, CIGS thin-film modules come
with a production aperature efficiency as high as 17%, comparable to rigid silicon panels.
Today's flexible lightweight modules are a fraction of the thickness of polysilicon and produce
four times the watts per kilogram, making them an increasingly strong alternative to rigid silicon.

120W Flexible PV Panels with Adhesive Back

120W Flexible PV Panels with Adhesive Back
120W Flexible PV Panels with Adhesive Back
120W Flexible PV Panels with Adhesive Back
120W Flexible PV Panels with Adhesive Back
1. What is efficiency?
Module efficiency characterizes a PV module's ability to convert available sunlight into useable power within a given area.
The formula to calculate efficiency is:
Efficiency(%)=Module power rating(Wp)/[1000W/m2*Total PV module area(m2)]
The module area is the total area of the product that includes both the active and inactive area.
Aperture efficiency is when only the active area of a PV module is considered. This does not include the inactive area.
2. What is the maximum rated power of PV module?
Maximum rated power of a PV module is the nominal power rating that is based on STC.
3. What does STC mean?
STC stands for Standard Test Conditions. STC has three conditions:
1) Cell Temperature 25 deg C
2) Irradiance 1000 W/m2
3) Air Mass 1.5
4. What is rating tolerance?
The tolerance is specified on the datasheet by a "+/‐"label by a nominal rating. This is the nominal deviation from a specification.
5. What is temperature coefficient? How does temperature and sunlight impact PV system performance?
On the datasheet, you'll notice 3 different temperature coefficients:
1) Temperature Coefficient of Pmpp
2) Temperature Coefficient of Voc
3) Temperature Coefficient of Isc
The performance of a PV cell behaves differently depending upon applied sunlight and temperature. The sunlight (aka irradiance) significantly impacts the current of the PV cell. The temperature has a significant impact on the voltage of PV cell.
At higher irradiance levels, the current goes higher, which means the temperature coefficient is positive.
At higher temperatures, the voltage goes lower, which is why the temperature coefficient is negative.
The Pmpp temperature coefficient is the factor that impacts the maximum rated power per deg C.
For example, if the temperature coefficient is 0.35 %/deg C, this means that for every degree above 25 deg C cell temperature (based on STC), you'll see a 0.35% impact on the nominal voltage rating.
6. What factors contribute to the overall system performance of a PV system?
"System performance" is a term we use to describe how closely the energy output of the PV system matches up with expectations. When determining whether a PV system is outperforming, meeting expectations or underperforming, it is very important to establish expectations based on technically sound assumptions.
There are a number of factors that can contribute overall to the absolute system performance of a PV system which may include:
1). Type of PV modules: product, technology, electrical specifications etc.
2). Installation location (determines environmental factors)
3). Ambient Temperature
4). Irradiance at the PV module
5). Shading
6). The azimuth (Direction of PV plane in relation to due north) and tilt angle of the PV modules
7). The cell temperature during operation: is there air flow on the back of the modules?
8). The type of inverters being used
9). System Application: Directly Adhered vs. Ballasted system
10). Length of DC wiring: i.e. Homerun Wiring (cables between PV Array and Inverter)
11). Module level power electronics, for example DC optimizers.
12). Soiling : dirt on the PV modules, debris, leaves
7. What makes the Thin Film FLEX modules different from conventional CSi solar modules?
1) Flexible - conforms to curved surfaces
2) Lightweight - structures don't have to be reinforced to support the weight of racks and panels
3) Powerful - the efficiencies are superior to other thinfilm modules, rivaling rigid silicon modules
4) Wind resistant - low profile modules offer little resistance to wind
5) Theft resistant - once attached, FLEX modules are difficult for a thief to remove (but can be removed by the owner if necessary)
6) Easy to install - peelandstick application requires very little training. In addition, the modules offer superior resistance to damage in seismic events and are difficult to steal once installed.
7) Shatterproof - FLEX modules will not shatter when struck by debris
8) Improved shade performance - FLEX modules use bypass diodes for every two cells that ensure that every cell receiving lights contributes to the module output
9) Improved aesthetics - the thin modules are unobtrusive and blend into surfaces
10) Doesn't require ballasting - many municipalities are restricting the use of ballast to secure solar modules. FLEX modules adhere directly to surfaces using peelandstick adhesive.
11) No roof penetrations - no increased risk of leaks or damage to surfaces
8. What BOS components are required to install a FLEX module?
Since FLEX modules are flexible, lightweight and frameless, the modules can be directly adhered to the surface.
This avoids the necessity of a mechanical racking system and ballasting. This also provides the benefit of having no roof penetrations.
For the electrical installation, all other BOS components like combiner boxes, wire management, and inverters would still be required.
9. Which inverters are FLEX modules compatible with?
On nonmetal surfaces, any type of inverter is compatible with modules. For metal surfaces, Please consult with a technical engineer.
10. Microinverters vs. string inverters vs. central inverters: What is the difference?
Central inverters start at around 100kW to as large as 10MW inverters. These inverters can be very large and heavy. The central inverter design is optimized for utilizing the least number of inverters at the site and is usually ideal for large ground mount projects.
This is typically the most costeffective solution from an installed cost standpoint. However, if a 1MW project utilizes a 1MW central inverter, the production at the site has a single failure point at the inverter. This adds O&M cost for any loss of energy production and the need for more skilled labor for any maintenance and repair in the case of an event.
This is the reason why more EPCs are starting to use the string inverter configuration for large projects. There is a higher potential for cost savings from an O&M perspective.

String inverters are usually 10kW80kW sized inverters that are ideal for commercial rooftop applications. Although you may need more string inverters for a project when comparing to a central inverter configuration, you can take advantage of multiple failure points, more max power tracking throughout the system, string level monitoring and lower skilled labor that is required for maintenance and repair.
Microinverters are designed to attach to a single or a couple of PV modules at a time. Although this configuration is more expensive than the other inverter configurations, it offers more maximum power tracking throughout the system, modulelevel monitoring and better energy output in shaded conditions. Microinverters are ideal for the residential market where the projects are smaller and more likely subject to shading conditions that are difficult to avoid. Also, since they are attached at the modulelevel, they can provide more control over the system with the ability to shut off the power and energize the DC homerun cables between the PV system and the inverter.
11. What type of surfaces are FLEX modules compatible with?
-TPO membranes
-Modified Bitumen
-Coated Steels, PVDF, SMP, Polyseter, Acrylic, Galvalume Plus, Galvaneal
-EPDM membranes
-Other Materials, including Multiple RV Backsheets, PVDF film(kynar), Tefzel, Glass, Stainless steel, Noryl, Lexan, Xyron, Fiberglass reinforced plastics, Aluminum
Send your message to this supplier
Ms. Susan Liu
Sales Manager
To: Ms. Susan Liu

Enter between 20 to 4,000 characters.

This is not what you are looking for? Post a Sourcing Request Now